14 research outputs found

    A cosmic microscope to probe the Universe from Present to Cosmic Dawn - dual-element low-frequency space VLBI observatory

    Full text link
    A space-based very long baseline interferometry (VLBI) programme, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2,000 km x 90,000 km elliptical orbits. The two telescopes can work in flexibly diverse modes: (i) space-ground VLBI. The maximum space-ground baseline length is about 100,000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.4 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves); (ii) space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at milli-arcsecond level; (iii) single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.Comment: Accepted for publication in Chinese Journal of Space Science, 10 pages, 2 figure

    Radio Sources Segmentation and Classification with Deep Learning

    Full text link
    Modern large radio continuum surveys have high sensitivity and resolution, and can resolve previously undetected extended and diffuse emissions, which brings great challenges for the detection and morphological classification of extended sources. We present HeTu-v2, a deep learning-based source detector that uses the combined networks of Mask Region-based Convolutional Neural Networks (Mask R-CNN) and a Transformer block to achieve high-quality radio sources segmentation and classification. The sources are classified into 5 categories: Compact or point-like sources (CS), Fanaroff-Riley Type I (FRI), Fanaroff-Riley Type II (FRII), Head-Tail (HT), and Core-Jet (CJ) sources. HeTu-v2 has been trained and validated with the data from the Faint Images of the Radio Sky at Twenty-one centimeters (FIRST). We found that HeTu-v2 has a high accuracy with a mean average precision (AP@50:5:95AP_{\rm @50:5:95}) of 77.8%, which is 15.6 points and 11.3 points higher than that of HeTu-v1 and the original Mask R-CNN respectively. We produced a FIRST morphological catalog (FIRST-HeTu) using HeTu-v2, which contains 835,435 sources and achieves 98.6% of completeness and up to 98.5% of accuracy compared to the latest 2014 data release of the FIRST survey. HeTu-v2 could also be employed for other astronomical tasks like building sky models, associating radio components, and classifying radio galaxies

    Status and progress of China SKA Regional Centre prototype

    Full text link
    The Square Kilometre Array (SKA) project consists of delivering two largest radio telescope arrays being built by the SKA Observatory (SKAO), which is an intergovernmental organization bringing together nations from around the world with China being one of the major member countries. The computing resources needed to process, distribute, curate and use the vast amount of data that will be generated by the SKA telescopes are too large for the SKAO to manage on its own. To address this challenge, the SKAO is working with the international community to create a shared, distributed data, computing and networking capability called the SKA Regional Centre Alliance. In this model, the SKAO will be supported by a global network of SKA Regional Centres (SRCs) distributed around the world in its member countries to build an end-to-end science data system that will provide astronomers with high-quality science products. SRCs undertake deep processing, scientific analysis, and long-term storage of the SKA data, as well as user support. China has been actively participating in and promoting the construction of SRCs. This paper introduces the international cooperation and ongoing prototyping of the global SRC network, the construction plan of the China SRC and describes in detail the China SRC prototype. The paper also presents examples of scientific applications of SKA precursor and pathfinder telescopes completed using resources from the China SRC prototype. Finally, the future prospects of the China SRC are presented.Comment: T. An, et al. Status and progress of China SKA Regional Centre prototype. Sci. China-Phys. Mech. Astron. 65: 129501 (2022

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    Radio Variable and Transient Sources on Minute Timescales in the ASKAP Pilot Surveys

    Full text link
    We present results from a radio survey for variable and transient sources on 15-min timescales, using the Australian SKA Pathfinder (ASKAP) pilot surveys. The pilot surveys consist of 505 h of observations conducted at around 1 GHz observing frequency, with a total sky coverage of 1476 deg2^2. Each observation was tracked for approximately 8-10h, with a typical rms sensitivity of ∼\sim30 μ\mujy/beam and an angular resolution of ∼\sim12 arcsec. The variability search was conducted within each 8-10h observation on a 15-min timescale. We detected 38 variable and transient sources. Seven of them are known pulsars, including an eclipsing millisecond pulsar, PSR J2039−-5617. Another eight sources are stars, only one of which has been previously identified as a radio star. For the remaining 23 objects, 22 are associated with active galactic nuclei or galaxies (including the five intra-hour variables that have been reported previously), and their variations are caused by discrete, local plasma screens. The remaining source has no multi-wavelength counterparts and is therefore yet to be identified. This is the first large-scale radio survey for variables and transient sources on minute timescales at a sub-mJy sensitivity level. We expect to discover ∼\sim1 highly variable source per day using the same technique on the full ASKAP surveys.Comment: 20 pages, 11 figures; accepted for publication in MNRA

    Interactions between the jet and disk wind in a nearby radio intermediate quasar III Zw 2

    Full text link
    Disk winds and jets are ubiquitous in active galactic nuclei (AGN), and how these two components interact remains an open question. We study the radio properties of a radio-intermediate quasar III Zw 2. We detect two jet knots J1 and J2 on parsec scales, which move at a mildly apparent superluminal speed of 1.35 c1.35\,c. Two γ\gamma-ray flares were detected in III Zw 2 in 2009--2010, corresponding to the primary radio flare in late 2009 and the secondary radio flare in early 2010. The primary 2009 flare was found to be associated with the ejection of J2. The secondary 2010 flare occurred at a distance of ∼\sim0.3 parsec from the central engine, probably resulting from the collision of the jet with the accretion disk wind. The variability characteristics of III Zw 2 (periodic radio flares, unstable periodicity, multiple quasi-periodic signals and possible harmonic relations between them) can be explained by the global instabilities of the accretion disk. These instabilities originating from the outer part of the warped disk propagate inwards and can lead to modulation of the accretion rate and consequent jet ejection. At the same time, the wobbling of the outer disk may also lead to oscillations of the boundary between the disk wind and the jet tunnel, resulting in changes in the jet-wind collision site. III Zw 2 is one of the few cases observed with jet-wind interactions, and the study in this paper is of general interest for gaining insight into the dynamic processes in the nuclear regions of AGN.Comment: accepted by Ap
    corecore